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Different approximate methods [i, 2] have been used to calculate the temperature strati- 
fication in containers when heat is supplied externally. These methods are based on a provi- 
sional separation of the total volume into different zones (the boundary layer near the lat- 
eral wall, the central region, and the mixing region near the free surface). The equations 
defining the problem are then simplified and solved separately in each region. The features 
of the flow field can be taken into account more completely by numerically solving the un- 
steadyequations of thermal convection, where no a priori assumptions are made about the struc- 
ture of the flow [3, 4, 5]. 

In practical problems the dimensionless parameters describing the flow regime (such as 
the Grashof and Rayleigh numbers) have values corresponding to turbulent convection. In [6] 
an approach was given to the numerical modeling of turbulent natural convection. This approach 
is based on the two-dimensional unsteady equations of thermal convection in terms of the varia- 
ble vorticity, stream function, and temperature. The method does not use any additional em- 
pirical information. The numerical modeling in this approach involves the calculation of the 
intantaneous values of the required quantities by means of a finite-difference scheme based on 
a nonuniform grid, and a subsequent statistical analysis to find the average quantities and 
the characteristics of the fluctuations. This method can be used to study convection in a 
cylindrical container for Grashof numbers up to 1.1013 and dimensionless times up to tv/R 2 = 
2.1"i0 -3 [3, 4]. Further increases in the Grashof number and time lead to a violation of the 
stability and convergence requirements and the resulting numerical solution does not satisfy 
the conservation laws. 

In the present paper we consider the numerical solution of the unsteady equations of 
thermal convection in terms of the velocity, pressure, and temperature. We use the control 
volume method. The temperature and velocity fields are calculated for the case of turbulent 
convection without the use of additional empirical information and the results are valid for 
sufficiently large values of the time. 

i. Statement of the Problem. We consider unsteady natural convection in a partially 
filled vertical cylindrical container. The free surface of the liquid is assumed to be flat 
in the absence of frictional effects. Constants uniformly distributed heat fluxes are applied 
to the lateral surface of the container, free surface of the liquid, and the bottom. The ve- 
locity and temperature fields are assumed to be axisymmetric and the angular component of the 
velocity is zero. The liquid is at rest at the initial time and has a constant temperature, 
which is taken as the reference point. 

The equations of convection in cylindrical coordinates are written as: 
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Because of the axial symmetry of the convective flow field and temperature field, the 
solution can be calculated in the plane 0 ~ r ~ R, 0 ~ z ~ H. We next determine the initial 
and boundary conditions. 

On the lateral surface and bottom of the container the no-slip condition is assumed, 
i.e., the normal and tangential components of the velocity vanish 

Vr (r = R) = V~ (r = R) = V~ (z = 0) = V~ (z = 0) = 0. (6 )  

The following conditions apply on the symmetry axis and on the free surface of the liquid, re- 
flecting the condition that the fluid cannot penetrate the surface and the absence of tangen- 
tial stress: 

OVz (r = O) = V~ (z = H) = __OV~ , H) = 0 .  
V ~ ( r = O ) =  Or Oz ~ z =  (7 )  

At the initial time t = 0 the liquid is at rest and it has a given initial temperature 

t ~ O  Vr(r , z) = V~(r, z) -- 0; T(r, z) = To. (8) 

During the time interval t k constant heat fluxes exist through the lateral surface and bottom 
of the container and through the free surface: 

0 ~ t ~ t h  q (r - R) == q~; q ( z - = - 0 ) = q D ;  q ( z = H ) = q s "  (9 )  

The heat flux vanishes on the symmetry axis 

O ~ t < t h  q ( r  = 0) = 0. ( 10 )  

2 .  M e t h o d  o f  S o l u t i o n .  S t u d y  o f  t h e  d i f f e r e n t i a l  e q u a t i o n s  (2 )  t h r o u g h  (4 )  shows  t h a t  
the dependent variables obey the generalized conservation law [7]: 
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Four terms appear in (ii): the unsteady, convective, diffusion, and source terms. The 
explicit forms of the coefficient of diffusion Fand the source term S depend on the nature of 
the variable #. They have been determined for each of the dependent variables and are written 
out in Table i. The components of the velocity are determined with respect to a grid shifted 
from the basic computational grid [7, 8], as shown in Fig. I. 

Introducing the convection-diffusion fluxes 

Jr ---- r ( pVr~b-- F c9~ ) ; Jz = pVzqb-- F Oqb 
Or Oz 

and integrating (ii) over a control volume (i, j), we obtain 

pr~AriAz j ((~7,jC1 n [j ~9+.t r  x.+l .+I / r  ~n+J n zr ~.n ~n+l I (12) At --~i, i)  + ~ 3)~,1 - -  ~ ,I~,i -4- (J~)~,j - -  ~J~,i = riAriAzj [(Sc)~,i + ~'pJ~,i ,.J ,, 

where the source term is linearized according to the equation 
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In a similar way we integrate the equation of continuity (i): 

F ~n+1 i~ ~n+ l IF ~n+i ~F ~n+1 0. (13) 

Solving (12) ahd (13) simultaneously, we obtain the discrete analog of the generalized equa- 

t ion: 
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TABLE i. Diffusion Coefficients and Source Terms in the Gen- 
eralized Conservation Law 
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The discrete analogs express the laws of conservation of mass, energy, and momentum for 
a finite control volume in the same way as the original differential equations express the 
conservation laws for an infinitely small control volume. One of the important features of 
the control volume method is that the exact integral conservation laws of mass, energy, and 
momentum apply to an arbitrary group of control volumes, and not only to the limiting case of 
a very large number of them. 

The calculations on the system of nonlinear equations (i) through (5) with the initial 
and boundary conditions (6) through (i0) are done in the following order. For each time step 
the temperature field is determined and then the resulting convective flow field is calcula- 
ted. We first determine an intermediate velocity field (V *, V_*) without the effect of pres- 
sure forces taken into account. This intermediate velocity fields does not satisfy the equa- 
tion of continuity. We calculate the mass imbalance Ami, j for each cell, which is then used 
in the equation for the pressure correction: 

= (~)~.#~-i.: + (~)~.jP~.:-~ + (~)~.:Pf~.: + ~ ~n.J~.i+l § ~m~.s. (15) 

Then the solution of the discrete equation (15) is used to correct the intermediate velocity 
field (Vr* , V *) and thereby obtain the actual velocity field (Vr, Vz) , which satisfies the 
equation of c~ntinuity. The entire procedure is repeated for each subsequent time step. 

3. Numerical Results and Comparison with Experiment. We use dimensionless quantities, 
where the scales of length, time, temperature, and velocity are given by H, Ha/~, qwH/%, v/H, 
respectively. 

We performed a series of calculations using different methods of solving the discrete 
analogs of the equation of motion, and the temperature and pressure equations. We tried the 
method of successive highest relaxation, and the method of variable direction. These itera- 
tive methods gave good convergence for the solutions of the velocity and temperature equations 
but the convergence was very slow for the solution of the pressure correction equation. The 
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Fig. 2. Vertical temperature profile at a distance r/H = 0.075 
from the axis (a) and Ar/H = 0.003 from the lateral wall (b) 

(dimensionless units). 

results shown in Figs. 2-4 were obtained using the method of elimination. Calculations were 
done for different values of the Grashof number Gr = gBqwH4/Xv 2 and dimensionless time T = 
tv/H 2 with the use of various time and spatial stepsizes. The program used a nonuniform grid 
in the spatial coordinates in order to obtain the best resolution of the fields in regions 
where the gradients of the variables were large. The following systems of cells were used: 
i0 x i0, 15 x 15, 20 x 20, 25 x 25. The results discussed below were obtained for a 15 • 15 
grid. Use of different time steps AT from 3.1.10 -7 to 5.6-10 -4 showed that the model gives 
stable results for all values of AT considered. However, good agreement between the calcu- 
lated and experimental data is obtained with AT = 1.9.10 -5. Large values of AT lead to rela- 
tively large variations in the velocity and temperature fields during a single time step and 
this causes significant disagreement between the calculated and experimental data. The results 

shown in Figs. 2-4 were obtained using AT = 3.1"10 -6 �9 

In the experiments, water was chosen as the working liquid. A vertical container of 
diameter 0.8 m was partially filled up to a height of 1.8 m. The walls and bottom of the cy- 
linder were made of steel of thickness 0.005 m. External heat fluxes were created by heating 
the surrounding air with a heating element. Chromel-Copel thermocouples were used as temper- 
ature detectors. The thermocouples were connected to an automated system and the experimental 
data was analyzed on the microcomputer DZ-28. The error of the temperature meter was 1,6%. 

Readings were taken from the thermocouples every 60 sec. 

The distribution of temperature with height in the liquid was measured at a distance r/H = 
0.075 from the axis of the container by means of eight thermocouples mounted on a probe. In 
order to obtain the best resolution of the temperature profile near the free surface of the 
liquid, six thermocouples were mounted on a float. The temperatures of the inner and outer 
surfaces of the container were measured with thermocouples distributed over the entire height 
of the lateral surface and over the entire radius of the bottom of the container and were 
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Fig. 3. Variation of the velocity components with radius (dimen- 
sionless quantities). 

placed on the inner and outer surfaces. Six thermocouples were placed at a distance Ar/H = 
0.003 from the lateral wall in order to measure the vertical temperature profile near the 
wall. The temperature of the surrounding air near the lateral wall, bottom, and above the 
free surface was also measured. Using the measured temperatures, the heat fluxes into the 
liquid through the lateral surface, bottom, and free surface were calculated: 

qw(Z, ~) = A a ( T a - - T ~ )  4/3, 

qD(r ' ,~) = A a ( T  a __ TD ) 4/a, 

qs(r, "~) = Aa (Ta - -  T~) 4/3, 

where A a = (g~CpX=p2/~) a [9]. 

Then the heat fluxes were averaged over time and the coordinates and these average values 
were used in the further calculations. Figure 2 shows the calculated and experimental tempera- 
ture profiles in the liquid at different times. The experimental data is denoted by the open 
circles. The temperatures are expressed as deviations from the initial temperature. The re- 
sults shown are for the Rayleigh number Ra = 3.10 z3, and qD/qw = i, qs/qw = 0.9. The maximum 
deviation between the calculated and experimental data was 3.2%. The temperature of the sur- 
face of the liquid was higher than the temperature of the liquid at the bottom of the container 
bothnear the axis of the container and near the lateral wall, even though qs < qD" This is due 
to convective transport of heat by means of flow of hot liquid toward the liquid--gas surface, 

Figure 3 shows the radial dependence of the velocity components at three horizontal cross 
sections of the container for the time T = 9.3| -~ and Ra = 3-10 z3. It is evident that due 
to the effect of the external heat fluxes, liquid at the wall is lifted upward, while back- 
flow is observed immediately outside the boundary layer. The maximum velocity is different 
in different horizontal cross sections; it increases as one approaches the free surface. 

Figure 4 shows the lines of constant excess temperature at the time T = 9.3o10 -4 for Ra = 
3.10 Is. Curves 1 and 2 correspond to the isotherms 1.244-10 -3 and 1.493-10 -s, respectively. 
A steep drop in the curves is observed near the temperature boundary-layer, and the drop be- 
comes steeper with increasing time. The isotherms are nearly horizontal outside of the bound- 
ary layer and the temperature increases as one moves in the vertical direction. 

For dimensionless times larger than 9.3.10 -~ a significant disagreement is observed be- 
tween the calculated and experimental data. This can be explained as follows. When addition- 
al empirical information is not used in the numerical modeling of turbulent natural convec- 
tion, we neglect all motion on a scale smaller than the cell size. Therefore it is evident 
that the energy needed to maintain these subcell fluctuations is not taken into account in the 
calculation. Hence the numerical method given here is only valid over time intervals that are 
sufficiently small. However, the time interval over which the calculation is valid is large 
enough to beof interest for many practical problems. 
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Fig. 4. Excess temperature iso- 
therms (dimensionless quantities). 

In summary, we have presented a numerical model to predict the temperature field in a 
liquid which partially fills a vertical cylindrical container in the case of turbulent natur- 
al convection. The method does not make use of additional empirical information and is based 
on approximating the conservation laws of mass, momentum, and energy by discrete equations in 
time and space, and the integration of these equations over control volumes and a certain time 
interval. The use of different grids makes it possible to obtain stable numerical results for 
large values of the regime parameters and sufficiently large values of the time and the results 
closely agree with experimental data. 

NOTATION 

Gr, Grashof number; Pr, Prandtl number; Ra, Rayleigh number; t, time; T, dimensionless 
times; r, z cylindrical coordinates; V , V , radial and vertical components of the velocity; 
P, pressure; T~ temperature; To, initial temperature; ~, dynamical viscosity; c, speclflc 
heat; %, thermal conductivity; p, density; Po, density corresponding to the initial tempera- 
ture; ~, coefficient of thermal expansion; g, acceleration of gravity; ~, kinematic viscosity; 
R, radius of the cylinder; H, height of the liquid in the container; q, heat flux; ~, gener- 
alized variable; F, coefficient of diffusion; S, source term; J, convection-diffusion flux; 
i, j, indices numbering the control cells; Ar, Az, cell dimensions along the r and z direc- 
tions; n, number of time steps; At, time stepsize; Sc, S , coefficients in the linearization~: 
of the source; F, mass flow rate; D, conductance; Pe, Pellet number; [A, B], the larger of the 
two quantities A and B. Indices: a, air; w, wall; D, bottom; s, free surface. 
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